2025 Long Term Development Statement

Final October 2025

Fore	word	3
1.	Executive Summary	6
2.	The UK Gas Network	8
3.	Our Long Term Strategy	10
4.	Demand	14
5.	Supply	21
6.	Investment in the Distribution Network	25
Арре	endix 1 : Links to Supporting Data	27
Gas ⁻	Transporter Licence	27
Long	Term Strategy	27
Demand & Supply Data		27
The Gas Transportation System		27
Connections at WWU		28

Foreword

Neil Henson
Director of Finance

Welcome to our Long-Term Development Statement for 2025, which indicates the present and future usage of our pipeline system and likely developments. If you are part of a company that is contemplating connecting to our system or entering gas transportation arrangements – this document is intended to help you identify and evaluate opportunities. It also captures recent progress towards Net Zero readiness and our plans for a transition to hydrogen and other renewable gases.

We have set out our 2025 planning process and our analysis of supply and demand on our network, with forecasts for the next ten years. Also included, is the latest information on transportation volumes, plus our whole energy system impacts, developments and investments.

Over the past twelve months we have responded to ongoing volatility and change, as we continue to deliver an ambitious RIIO-GD2 price control programme, against an ever-

changing and more complex geopolitical and economic backdrop. Wholesale energy prices in the UK have generally decreased over the past year, though they remain higher than pre-pandemic levels and have shown some recent volatility. The impact is still being seen with a comparatively lower gas demand in the last three years.

On 2 December 2024 our RIIO-GD3 Business Plan¹ was approved by the Board and we submitted this to Ofgem by their deadline on 11 December 2024. On 1 July 2025, Ofgem published their Draft Determinations², in which they make some overarching statements on the gas sector, as follows:

- "While there remains significant uncertainty as to the pace and scale of the transition away from natural gas to meet the statutory net zero targets, we do not anticipate large-scale, systematic changes to the natural gas networks during the RIIO-3 price control period."
- "...(Ofgem)...recognises the enduring importance of gas networks as a vital source of heat for homes, for powering businesses and industry, and as a key pillar for energy security."
- "Natural gas continues to play a major role in the day-to-day heating of households, the functioning of industrial processes and the generation of electricity. Protecting the safe and secure delivery of gas to these homes and businesses, whilst strengthening the resilience of the infrastructure to threats from climate change and cyber-attacks, remains a key priority for the RIIO-GD3 price control arrangements."
- "...proposed funding (by Ofgem) maintains a strong focus on safety, asset health and customer focused outputs."

Following the launch of the National Energy System Operator (NESO) on 1 October 2024, we have actively contributed to the development of new frameworks for Strategic Energy Planning. Methodologies for the Centralised Strategic Network Plan and Strategic Spatial Energy Plan are now published, and documentation for transitional Regional Energy System Planning (tRESP) along with proposed modifications to the gas transporters licences in relation to it are currently out for

¹ https://www.wwutilities.co.uk/about-us/business-plan/

² https://www.ofgem.gov.uk/sites/default/files/2025-06/Draft-Determinations-Gas-Distribution.pdf

consultation. As part of our commitment to supporting Strategic Energy Planning; we are reviewing our internal processes, systems, and organisational structures to be fully prepared to meet our responsibilities in this evolving area.

NESO's Future Energy Scenarios for 2025 feature the use of biomethane prominently, with up to 64TWh projected in 2050 across Great Britain. This equates to 38% of NESO's forecast gas supply. In the UK Government's July 2025 Clean Flexibility Roadmap³, a role for biomethane in supporting dispatchable gas-fired power generation is proposed.

We continue to see growth of biomethane on our network and are implementing new system operability solutions to improve capacity for customers, particularly during periods of low demand. This year this has included Smart Pressure Control and Reverse Compression. We continue to investigation new and innovative ways to use these and other solutions, to ease rollout and to share learning with others.

In our Sustainability Strategy, we set out our vision for a Net Zero energy system. Published in 2023, our strategy was supported by stakeholder engagement. We describe that for the UK to reach Net Zero carbon emissions; society needs to make considerable changes to the way energy is generated and used. Our network infrastructure can play a critical role in enabling this transition. We set out our plans for supporting Net Zero in our RIIO-GD3 Business Plan and continue to engage with Ofgem and our stakeholders on these plans before the new price control starts in April 2026.

Our dedication to putting customers and colleagues first has again brought significant success again in 2025. Here are some of our key achievements across the last 12 months:

- Continued development and use of the **Pathfinder 2050** whole energy system model⁴ that enables low carbon alternatives to be evaluated. Until the last two years this tool had been used to assess UK-wide scenarios, but emphasis has shifted to support of Local Area Energy Plans (LAEPs) across the network our network, as well as at individual property level. The tool has been used to support development of, and we are exploring other uses for the model, including a return to nationwide energy assessments, and an increased focus on sustainability metrics.
- In early 2025 we supported the launch of the North East Wales Industrial Decarbonisation (NEWID)⁵ cluster. Partners included Net Zero Industry Wales, SP Energy Networks, energy producers and industrial users in the region. The plan sets out the requirement for hydrogen infrastructure to decarbonise industry under all scenarios. In August 2025 we published the feasibility study for Hyline Gogledd⁶, demonstrating the potential for a hydrogen pipeline for the cluster.
- Our 2024-25 Delivering Innovation report, summarises the research we are leading and collaborating on to support the energy system.
- Ongoing development of the Hyline Cymru⁸ project which is central to the South Wales Industrial Cluster plan. We are currently assessing options to progress the project through its next phases as relevant policy evolves.
- Collaboration in the West of England Industrial Decarbonisation Plan⁹ in early 2025. This sets out plans for decarbonising heavy energy users in the area and is the basis for our hydrogen planning

https://assets.publishing.service.gov.uk/media/68874ddeb0e1dfe5b5f0e431/clean-flexibilityroadmap.pdf

⁴ https://www.wwutilities.co.uk/about-us/future-of-energy/2050-energy-pathfinder/

⁵ https://www.wwutilities.co.uk/media/i1sineot/sustainability-strategy-2023.pdf

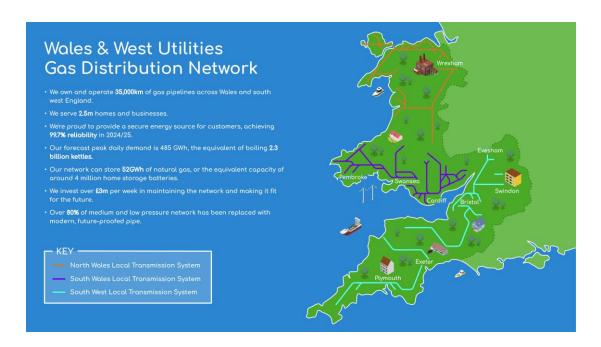
⁶ https://www.wwutilities.co.uk/media/cq2j3pwz/wwu_hylinegogleddpublicreport_english.pdf

⁷ network-innovation-allowance-annual-summary-2024-25.pdf

⁸ wwu-hyline-public-report.pdf

https://weic.co.uk/wp-content/uploads/2025/05/UKRI300 WEIC 01 LIDP-Plan DIGITAL.pdf

in the wider Southwest. In September 2025 we announced the completion of our Conceptual Plan for the region, which will form the basis for potential hydrogen pipeline development to support industrial decarbonisation.


- Publication of our 2024-25 Annual Environmental Report¹⁰ to share the progress we have made
 against our Environmental Action Plan ambitions. While we produce the report as part of our
 regulatory requirements, it also highlights how we have made our business more sustainable for
 our customers, communities and colleagues.
- Our twelfth consecutive Gold Award from the Royal Society for the Prevention of Accidents (RoSPA) in 2025.
- One of the first nine companies to do so, we achieved reaccreditation to **ISO 22458 Customer Vulnerability Standard** and the associated Kitemark.
- We continue to be recognised as achieving ISO14001 (environmental management) and ISO55001 (asset management) accreditations from the International Organisation for Standardization (ISO) following audits of the relevant systems and processes.

Our achievements demonstrate our ongoing commitment to improving the service we provide to today's customers; and to delivering a Net Zero future.

Neil Henson

Chief Financial Officer

¹⁰ www.ilities.co.uk/media/ehrcyule/www-annual-environmental-report-2024-25.pdf

1. Executive Summary

1.1 Context

We are required to publish this annual statement in accordance with Standard Special Condition D3 of our Gas Transporters Licence and Section 4.1 of the Uniform Network Code (UNC) Transportation Principal Document¹¹.

Reflecting our responsive forecasting approach using the latest information available; this year our forecasts are presented in scenarios relating to the impact of the cost of energy on temperature-sensitive load bands.

1.2 Our Long-Term Strategy

Our ambition is to be trusted to expertly serve customers and communities with safe, reliable and affordable energy services today, while investing wisely to create a sustainable, greener future.

In 2023, we published our first Sustainability Strategy which sets out our vision and targets, including our aim to develop a Net Zero-ready gas network, and to support innovation and research to develop and deliver lower carbon options for our customers.

An update on progress against our Strategy will be published in late 2025 and is summarised in Section 3. Where applicable these impacts have again been accounted for in the forecasting models and research that we have undertaken.

1.3 Demand Outlook

Our approved peak demand forecast scenario anticipates continued levels of demand, a consequence of high energy prices. We expect new connections from large industrial demands such as power generation, compressed natural gas (CNG) fuelling and data centres based on the volume of enquiries received. However,

¹¹ https://www.ofgem.gov.uk/energy-policy-and-regulation/industry-licensing/licences-and-licence-conditions

these potential demands are omitted from our forecast to prevent excess capacity being booked at a cost to our customers. The subsequent five years of the forecast is characterised by steady reduction due to a combination of improved efficiencies and adoption of low carbon heat technologies.

Peak demands are forecast to remain static until 2029/30, before decreasing by 4% to 2034/35.

We are seeing significant interest in distribution network connections from larger demands; including industry, power generation, compressed natural gas vehicle fuelling, and data centres.

1.4 Supply Outlook

Each year, after reviewing peak demand, we ensure that we have sufficient capacity booked with National Gas Transmission (NGT) at our seventeen Offtake sites. This strategy is so that we meet peak demand in our network for the coming year and over the booking period. In addition to natural gas supply, there are twenty-two biomethane sites connected to our network which have capacity to meet the heating needs of over 170,000 customer homes. There are a further nine biomethane sites with booked capacity on our network that would increase the customers supplied to the equivalent of nearly 250,000 homes. We continue to receive a high volume of enquiries regarding prospective sites, indicating increased interest from prospective customers.

We continue to support significant industry work to update regulatory standards around gas quality so that networks can transport a wider range of gases safely - and in doing so, support decarbonisation. Alongside proactively encouraging further green gas connections; we are progressing innovative, pragmatic solutions to enable increased transportation of renewable gases including hydrogen. These include compression, blending tees, and smart pressure control.

1.5 Investment Implications

Maintaining a safe, reliable gas supply is a key priority for our stakeholders. We adopt innovative techniques to ensure efficient investment in network health through use of monetised risk models, and we fed this analysis into our RIIO-GD3 business planning processes.

Our need for the following network interventions is growing, to accommodate increasing customer demands for flexible gas usage and green gas injection:

- Network capacity.
- Compression.
- Storage.
- Smart pressure control.

Our Mains Replacement Programme means that our low-pressure distribution networks are largely hydrogen ready. There will be some additional investment needed to repurpose other parts of network for hydrogen, but reusing the existing network is essential if we are to deliver net zero in the UK by 2050.

However, the volumes of hydrogen required to maintain energy demand will be greater when compared to natural gas. This, and the transition approach itself, will drive some level of investment in the network.

2. The UK Gas Network

James Earl
Chief Executive Officer
Future Energy Networks

The profile and importance of energy; how we generate it; how it is transported; how much it costs, and its impact on the environment has never been higher. As a result, the last year has been an exciting one with bold ambitions set out and important milestones reached across the sector.

The new Labour Government set out becoming a Clean Energy Superpower as one of its parliamentary missions with a big emphasis on Clean Power 2030. This mission has anchored much of the government's thinking when it comes to energy, meaning that their focus has been on driving forward with policy to incentivise electrification of much of our economy, from domestic heating and transport to industrial processes. In February the Climate Change Committee (CCC) published their 7th Carbon Budget covering the

years 2038 – 2042 and this took a similar view, with electrification taking centre stage.

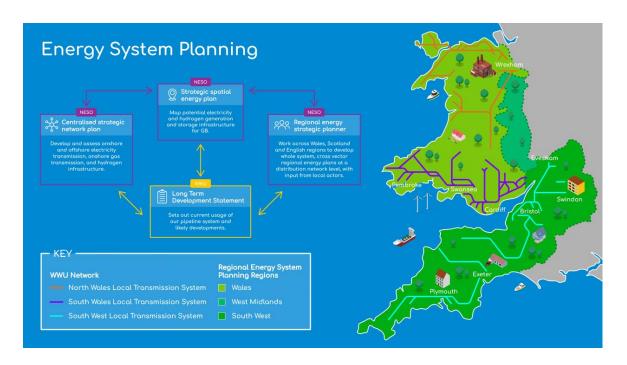
The role of gas has been less in the spotlight as a result, meaning a significant amount of effort has been spent working with government on reaffirming the importance of gases to the country's energy security, flexibility and resilience. This message coupled with the huge opportunity of green, low carbon gases has been a constant drumbeat for the industry to demonstrate the vital contribution gas networks can play in delivering clean power and net zero in an affordable and efficient way.

These efforts have paid off. The Department for Energy Security and Net Zero (DESNZ) continues to recognise the critical importance of low carbon gases to delivery of Net Zero, and has been busy checking off key milestones on the pathway to creating a thriving hydrogen economy. The UK's first commercial scale green hydrogen projects have now signed contracts through the first Hydrogen Allocation Round (HAR1), and the shortlist of projects under the second round (HAR2) has recently been published. Additionally, funding has been announced for two blue hydrogen projects in the form of HyNet and H2Teeside and £500m has been allocated for the UK's first hydrogen transport and storage network.

These things are all vital to give confidence to investors and producers of hydrogen so that we can achieve net zero, as no pathway to 2050 can be delivered without low carbon gas in some form. There has also been activity in the policy space for hydrogen with the recent consultation on a minded to position of blending up to 2% hydrogen into the National Transmission System, which is a welcome build to the 2023 minded to position on blending at distribution level. The gas network sector also awaits a decision on hydrogen for home heating, which government has said is set to be determined before the end of 2025.

Another important low carbon gas, biomethane, has had a promising year with its profile in government, DESNZ and with NESO being raised significantly. A year ago, biomethane was not particularly on the radar of government and sector decision-maker as a serious contributor to tackling Net Zero, and seen mostly as only having a marginal role to play. This has changed as a result of the launch of the Green Gas Taskforce (GGT) campaign group, which brings together biomethane producers, shippers, transporters and decision-makers specific aim to champion the real and substantial contribution biomethane can plan in meeting our nation's emission reductions targets. The success of the taskforce is evident in the fact that NESO has included the potential to produce up to 65TWh of energy from biomethane by 2050 in their Future Energy Scenario 2025 (FES25), which is a massive uplift from their previous iterations of the FES. The GGT has published evidence to suggest that production of biomethane by 2050 could be as high as 120TWh by 2050, around a sixth of current

gas demand and potentially a far greater proportion if that demand were to fall. All of the GB gas networks are big advocates of the benefits of biomethane and have demonstrated this by putting ambitious aims and investment proposals into their RIIO-3 Business Plans, as well as by revamping the engagement they have with the industry to streamline and optimise biomethane grid connections to get more green gas into the network.


This year also saw Ofgem's Draft Determinations (DD) of the gas networks' RIIO-3 business plans. There are rightly stretching efficiency targets within these for the industry to deliver, but it is of critical importance that this price control package is appropriate for the networks to continue to operate the world class, reliable and safe networks which underpin much of our economy. The next stage will be the Final Determinations in December following a period of negotiations between Ofgem and network companies, with the 5 year RIIO-3 price control period starting in April 2026.

The last year has also seen the gas networks' newly established membership organisation Future Energy Networks (FEN) successfully bolster and amplify the messages from the gas networks through collective engagement with senior decision makers in government. FEN has helped the sector have a targeted, unified voice on key topics which are critical to the future of the networks, which has been well received and impactful. More is yet to come from FEN in the coming years as it seeks to help the energy sector and government understand and value the role of gases, both in the current and future energy mix, and recognise the enduring need for a gas network as part of a whole energy system to meet Net Zero. More information on FEN can be found on the website: Future Energy Networks (FEN) | The Institution of Gas Engineers and Managers (IGEM)

J. Earl

James Earl
Chief Executive Officer (FEN)

3. Our Long-Term Strategy

3.1 Key Messages

- Our ambition is to be trusted to expertly serve customers and communities with safe, reliable and affordable energy services today, whilst investing wisely to create a sustainable, greener future.
- The services that we provide are essential in everyday life for all our customers. We invest over £3m every week in improving our gas network so that it is safe and available when people need it.
- We recognise that most of the gas transported to our customers today is a fossil fuel, and that our
 operations directly and indirectly impact on the environment. We support the commitment of the UK and
 Welsh governments to reaching Net Zero carbon emissions and believe that the investments we make in
 reducing emissions, decarbonising heat, power and transport can help deliver a Net Zero energy system.
- Our Sustainability Strategy sets our ambition and targets, including how we intend to deliver a Net Zero ready network which can transport low carbon hydrogen in place of natural gas.

As across the whole energy system, the gas distribution sector is going through significant change, and trends are emerging that have informed our investment proposals and activity in the short and long term:

- Energy networks are becoming much more closely integrated and are interacting in more complex
 and dynamic ways. Our demand data, for example, clearly shows the increase in the use of flexible
 generation at times when renewable generation decreases because of weather conditions. This
 may evolve quickly in response to the UK government's 2030 power sector decarbonisation target.
- New types of customers, with different requirements and behaviours, are having a significant impact on the use of our network. For example, we are having to increase the frequency with which we reconfigure our medium and intermediate pressure systems to enable green gas producers to continue to inject when demand is low. We also anticipate having to implement smarter systems to manage changes in network flows to support gas and electric vehicle charging. This dynamic could further increase if hydrogen is blended into our network.

These trends inform our innovation and Net Zero delivery activity (see 3.3). We have worked on and continue to develop projects to explore cross vector interactions, which are likely to further increase as

hydrogen develops. This could include green hydrogen being produced from renewable electricity; or hydrogen used to generate electricity to meet peak demands, supporting both the gas and electricity systems. The forecasts detailed in this document represent a range from low to high growth forecasts, and they consider current policy and customer trends.

3.2 Our role in the Energy System Transition

Our extensive network across Wales and the South West of England is a vital asset for our 2.5m customers across the communities we serve; and will be needed to support secure energy supply for decades to come. Gas distribution network assets will continue to be important to meet seasonal demands and to minimise disruption and cost. We can therefore accelerate the transition to a Net Zero energy system in multiple ways:

- By maintaining a reliable and efficient network
- Continuing to invest in emission-reducing activities,
- Readying our assets to carry low-carbon gases such as hydrogen
- Preparing our assets to support a fully renewable energy system.

We are confident that our gas network infrastructure has a long-term role in the transition to a decarbonised energy system. As custodians of the gas distribution network in Wales and the South West of England, we need to prepare for a range of future outcomes. These include investing carefully to prepare for the transition of our assets; reducing emissions and supporting customers to ensure that noone is left behind.

In the short term, we are continuing to connect biomethane producers to our network (see Section 5). We are also working with existing producers, other networks and the wider industry to support developments in green gas. In addition, we are involved in industry wide initiatives to support the implementation of the Department for Energy Security and Net Zero (DESNZ) policy decision in favour of gas distribution network blending of hydrogen.

During 2024/5 the gas networks have engaged with KPMG to design the market frameworks modifications necessary to facilitate hydrogen blending, and to develop a full operational implementation plan.

From a market frameworks perspective, a key focus of the project has been to develop capacity and connection models for hydrogen blending entry capacity. This has been supported by significant stakeholder engagement and input including via UNC Review Group 0849R¹²

A significant amount of research is underway to understand the relative costs and benefits of different future energy strategies. This will provide evidence to support DESNZ national decisions on hydrogen blending and the Clean Heat Appraisal in 2026.

Work is ongoing to identify, understand and address the changes to regulations, systems, and processes that will be required to accommodate hydrogen in our network.

The following graphic gives an idea of local transmission system size and the opportunity available for decarbonising our network with blended hydrogen. Exact capacity for network entry is still geographically dependent and subject to capacity studies being undertaken.

¹² https://www.gasgovernance.co.uk/0849

Figure 9: Network Entry Capacity Map

3.3 Energy System Transition Research, Development and Innovation

We work collaboratively with other networks, academics, innovators and other third parties to develop projects which support the Energy System Transition, and emissions reductions. Our approach to developing these projects, is presented in our annual 'Delivering Innovation' report, ¹³ which also includes case studies on some of our projects and their benefits.

Preparing our network assets for the Net Zero transition means understanding how the generation and use of energy will change in the regions we serve, so collaboration with partners in these areas is critical. We are ongoing active partners in the South Wales Industrial Cluster. Together, we published a feasibility study for the Hyline Cymru pipeline in early 2024¹⁴, and continue to develop that flagship project. We contributed to the development of the North East Wales Industrial Decarbonisation Plan,¹⁵ and in summer 2025 published a feasibility study on Hyline Gogledd, a hydrogen pipeline to meet the hydrogen demands identified in the cluster plan.¹⁶ During 2024-25 we also mapped the potential for hydrogen in the South West. Our work identifying hydrogen pipeline requirements is also identified in the West of England Local Industrial Decarbonisation Plan.¹⁷ Since then, we have published our Conceptual Plan for the region.¹⁸

¹³ network-innovation-allowance-annual-summary-2024-25.pdf

¹⁴ https://www.wwutilities.co.uk/media/5323/wwu-hyline-public-report.pdf

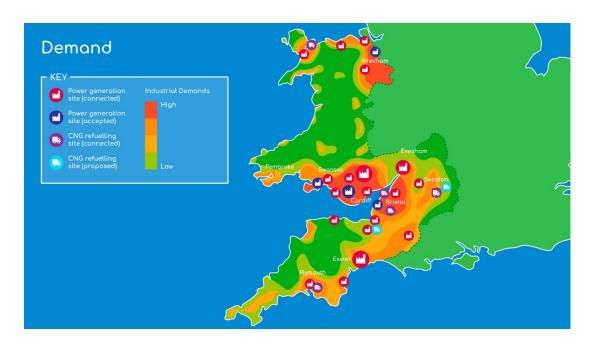
¹⁵ North East Wales Industrial Decarbonisation cluster (NEWID) – Net Zero Industry Wales

¹⁶ www hylinegogleddpublicreport english.pdf

¹⁷ UKRI300 WEIC 01 LIDP-Plan DIGITAL.pdf

¹⁸ Wales & West Utilities identifies major hydrogen opportunities for south west England | Wales & West Utilities

3.4 Local Area Energy Planning


We are heavily involved in Local Area Energy Planning, to meet the expectations of devolved government, local authorities and other stakeholders. In recent years we have worked directly on nineteen Local Area Energy Plans (LAEPs), supported by seventy runs of our bespoke 'Pathfinder' energy systems model to test different scenarios. We expect this activity to continue and grow in importance in the coming years, as local communities become more engaged in energy system developments, and as the National Energy System Operator begins the process of developing Regional Energy System Plans.

3.5 Managing Environmental Impact

As part of our commitment to sustainability, we are taking action to improve our environmental impact. This includes reducing emissions from our network and operations, managing our waste and resources, and delivering high quality management of the land we are responsible for. Progress is summarised in our Annual Environmental Report.¹⁹

¹⁹ https://www.wwutilities.co.uk/media/ehrcyu1e/wwu-annual-environmental-report-2024-25.pdf

4. Demand

4.1 Key messages

- Our approved Resilient Gas Pathway scenario assumes that domestic demand will remain at the
 levels seen recently, remaining static other than small numbers of new connections and isolations.
 However, this may be offset to some extent by large new demands such as industry, power
 generation, and compressed natural gas (CNG) compounded by newly connected large nondomestic sites over the next five years.
- Network peak demands are forecast to increase marginally out to 2029/30, before decreasing by 8% over the subsequent five years due to a combination of improved efficiencies and adoption of low carbon heat technologies.
- We are seeing significant interest in distribution network connection from larger demands, including industry, power generation, CNG vehicle fuelling and data centres.
- An alternative High Gas Pathway scenario assumed that the domestic load would recover to pre
 cost of energy crisis levels. This scenario was discounted, but we will continue to review this load
 band, where uncertainty is greatest.

4.2 Winter 2024/25 Review

Winter 2024/25 saw relatively low demand across our network area. This was partly due to mild weather, with the October-March period categorised as a 1-in-5 warm winter in the Winter Severity report NESO shares with gas networks each year. WWU's independent analysis of weather-corrected demand data suggests that less gas is being consumed on high demand days compared to equivalent weather in prior years. This is thought to be due to the high cost of energy over recent years, and resultant changes in the habits of gas consumers rather than a significant decrease in customer numbers. As per Ofgem's debt statistics, both the number of energy accounts in arrears and the average level of debt have risen steadily, suggesting that this reduction in demand is unlikely to be reversed in the short term²⁰. Total throughput across the last few winters is summarised below:

²⁰ https://www.ofgem.gov.uk/data/debt-and-arrears-indicators

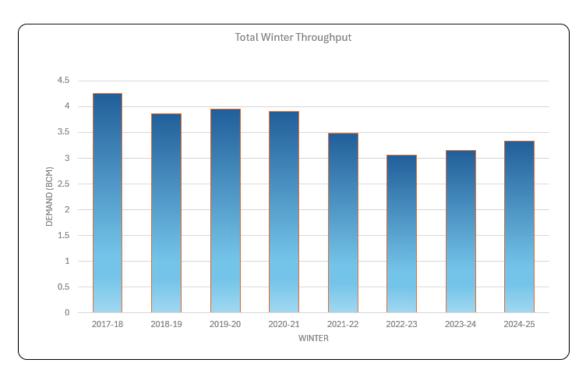


Figure 1: Comparison of winter demand from 2017-18 to 2024/25 in Billion Cubic Metres

4.2.1 Highest Demand Days

As with total demand, the maximum daily demand we saw in winter 2024/25 was also relatively low – a 1-in-3 warm day per NESO's Winter Severity report. Again, this is largely due to mild weather but also likely compounded by the impact of high energy prices. The maximum demand day was on 18 January 2025 when 30.37 million cubic metres of gas was transported, the equivalent of boiling 1.6 billion kettles.

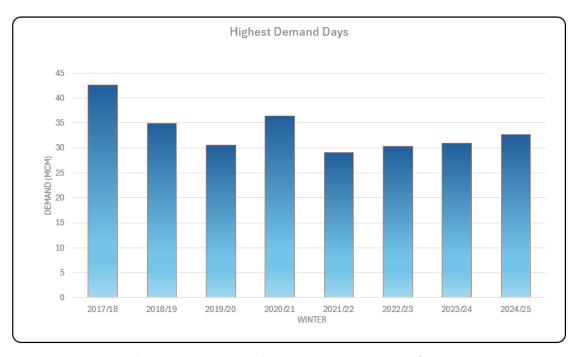


Figure 2: Comparison of highest demand days from winter 2017-18 to 2024/25 in Million Cubic Metres

4.2.2 Winter Demand Profile

In the graph below, the bold red trendline shows the variability of daily demand throughout the course of last winter, with previous winters also shown for context.

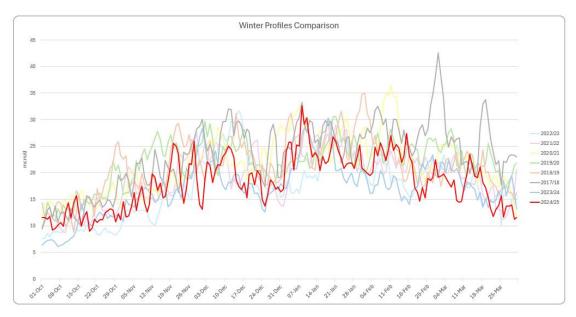


Figure 3: Comparison of winter demand profiles from 2017-18 to 2024/25 in Million Cubic Metres

4.2.3 Gas Demand and Temperature

The graph below illustrates that over the last two winters, demand has been lower than during previous winters when similar low temperatures were experienced, or when equivalent effective temperatures were seen. This data forms the basis for our assumption that demand is reduced due to consumer behaviour which is most likely linked to high energy costs. There is currently uncertainty as to whether demand will recover, how soon this might happen and to what extent, as described in the key messages above. This data is for illustrative purposes only and shows only our South West Local Distribution Zone (LDZ), where there is a greater proportion of domestic demand than in Wales. A useful rule of thumb for the relationship between demand and temperature is that every 1°C temperature drop typically results in a 5% demand increase.

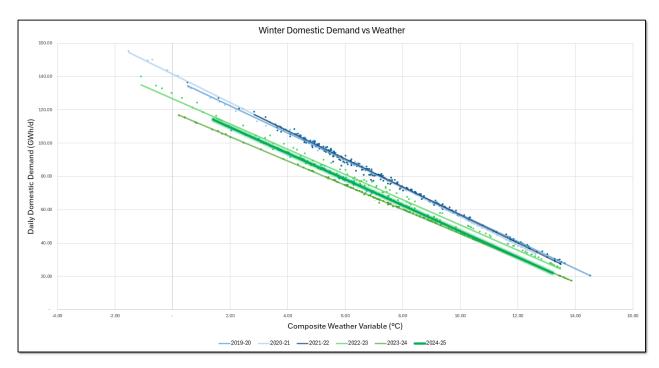


Figure 4: Relationship between demand and composite weather variable* since 2019/20 for SW LDZ *Composite Weather Variable is a metric combining temperature and wind speed.

4.3 Exit Capacity Planning Guidance

In December 2020 Ofgem published their RIIO-2 Final Determinations for the transmission and gas distribution price controls. These set out the key elements of the price control from 1 April 2021 to 31 March 2026. This included a new licence obligation; for the gas transporter licence-holders to comply with an enhanced obligations framework, in relation to the exit capacity booking process. Ofgem stated that, "Standard Special Licence Condition (SSC) A57 (Exit Capacity Planning) of the gas transporter licences requires the licence holder to comply with the Exit Capacity Planning (ECP) Guidance²¹."

4.3.1 Forecasting approach

Each year we publish an Exit Capacity Planning Methodology report that sets out the process to be followed.²²

The ECP Methodology details the end-to-end process for the process steps detailed below:

- Collection and processing of actual demand data
- Customer engagement and data collection
- Population of network analysis and other models
- Load and demand forecasting

Over recent years, the requirements of our customers and the way they use our network have changed. Today, alongside the growth of renewable energy supplies in the UK, flexible gasfired generation plays a bigger part in supporting intermittent renewable

generation. We are seeing emerging demand types such as data centres, with CNG fuelling becoming a more established demand - and tracking these is an important part of the forecasting process. These demand types, coupled with continued uncertainty around domestic gas demand, require us to develop our long-term forecasting and modelling capability to ensure that we can continue to develop reliable and efficient networks. We have also tracked domestic demand trends by comparing weather-corrected data for the relevant load band from the days with most severe weather during recent winters.

²¹ https://www.ofgem.gov.uk/publications/exit-capacity-planning-guidance

²² https://www.wwutilities.co.uk/media/svwn2uve/wwu-ecpg-methodology-statement-2025-final.pdf

Stoke-onTrent Stoke-onTrent Stoke-onTrent Wolverhampton Birmingham WALES Stroud Stroud Cardiff Stroud Stroud Stroud Stroud Stroud Cardiff Salisb Soul Bournemoutt Connected Accepted

4.3.2 Flexible Gas Generation & Other Non-Typical Demands

Figure 5: Power Generation Landscape at WWU Figure 6: CNG Fuelling Landscape at WWU

Working in collaboration with other Distribution Networks (DNs), we have reacted to the changing needs of our customer and commercial services in relation to intermittent or unpredictable demands, like flexible generation and CNG fuelling.

We draw on stakeholder engagement and latest market intelligence to obtain up to date views on the potential power generation demand in our network.

The latest view on distributed power generation connected across WWU is as per **Figure 5**, showing the 57 sites connected and six with connection agreements. In total these 63 sites total 1.8 GW of generating capacity.

Figure 6 shows the six connected CNG fuelling sites, and two accepted sites.

4.4 Demand Summary

This section describes the key forecast assumptions that are used in our current processes to generate the ten-year forecast demand for each of the three LDZ within our DN.

Headline outcomes are included, as well as information about how current forecasts compare to previous years. Further information, including the detailed numerical tables, is provided in an accompanying workbook²³.

Our gas demand forecasting is underpinned by our stakeholder engagement and analysis which suggests that natural gas will continue to play a significant role in the UK energy market beyond 2030.

To summarise:

• Peak (daily) network demand is expected to decrease by approximately 6% in 2025/26 compared with last year's 2024/25 forecast.

²³ www-2025-long-term-development-statement-workbook.xlsx

 Annual demand is expected to remain largely constant out to 2029-30, before declining in line with peak demand.

During the next ten years, our view in the 2025/26 forecast is that peak day demand will remain largely constant to 2029/30, having decreased over the last two years due to the recent high cost of natural gas. A slow reduction is projected to follow due to electrification of heat anticipated to a limited extent, although this is something we will review each year. There is a degree of uncertainty as to how customers will react to price changes, but although the energy price cap has reduced from 2022 levels there is no immediate evidence of a recovery in demand.

The relationship between peak and annual demand continues to change and customers continue to use gas for more diverse purposes today than historically seen. One example is gas being used for electricity generation - these loads were previously base load and varied very little day by day. More recently gas generation is being used for flexibility and therefore gas consumption significantly varies day to day, depending on the availability of renewable generation such as wind and solar. This shows the importance of gas networks in a whole energy system context, due to the reliability of gas for dispatchable generation.

4.5 Forecast Process

4.5.1 WWU peak forecasting process

A priority for 2025 was to understand and address the impact of high energy prices on demand. For domestic demand, in our standard approach, we use a model produced by LCP Delta to forecast future demands. The model considers factors including load growth; weather sensitivity; projected improvements to boiler efficiencies, and the latest Composite Weather Variables (CWV) from the Xoserve process. To ensure a robust approach, we carried out further analysis of the weather-corrected demand data considering the outcomes of the three different approaches: the forecast by NESO; the LCP Delta model; GD3 Business Plan connection and isolation projections; and our independent analysis, to arrive at our finalised forecast.

4.5.2 Capacity management

We annually assess the capacity levels required to operate the network in a safe and secure manner and to comply with the obligation to meet 1 in 20 demand conditions. There are a variety of ways in which capacity requirements can be managed. If a capacity constraint occurs on our network our main options would be to:

- Proceed with the network investment that is described in Section 6; or
- Interrupt key sites through bilateral interruption contracts with customers where available.

If interruption is not taken up there may also be a requirement to increase our bookings of capacity from the National Transmission System (NTS). We no longer have any interruptible customers on our network despite having regular invitations through the annual auction for interruption processed by Xoserve on behalf of the gas networks.

Further information including offtake and storage capacity can be found in the network capacity section in our Long-Term Development Strategy (LTDS) Workbook²⁴.

4.5.3 LDZ peak forecast results

This section provides the latest gas demand forecasts through to 2034/35. More detailed information is provided in our workbook published alongside this report on our website. This includes forecasts by load band for both peak and annual demand on a year-by-year basis. Our peak demand forecasts set out a range of anticipated gas demand across multiple scenarios. Our core Resilient Gas scenario predicts gas demand being static over the first three years of the forecast, before subsequent demand reduction due to partial electrification of heat demand. The divergence between our selected Resilient Gas and High Gas scenarios in 2034/35 is 63.4 GWh/d, due to various factors causing uncertainty. Primarily, this is the response of gas consumers to gas price volatility.

²⁴https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.wwutilities.co.uk%2Fmedia%2F5773%2Fwwu-long-term-development-statement-workbook.xlsx&wdOrigin=BROWSELINK

The graphs below show the gas demand forecast summation of all three of our LDZs. **Figure 7** shows our selected Resilient Gas forecast in the context of historical demand, the capacity we have booked at our NTS offtakes, last year's selected forecast, and NESO's Counterfactual pathway. **Figure 8** sets out a breakdown of the load bands that make up the forecast (with potential future demands added), again with last year's forecast and capacity bookings as context, as well as our alternative High Gas forecast.

Where forecast peak demand exceeds our capacity booking beyond 2024/25, this is due to a single year of capacity being booked for a specific large demand where future consumption is uncertain — booking enduring capacity would result in UC and we are able to protect this capacity from substitution on the NTS though other ECPG processes in the meantime. More detailed data on the three LDZs within our network can be found in the workbook.

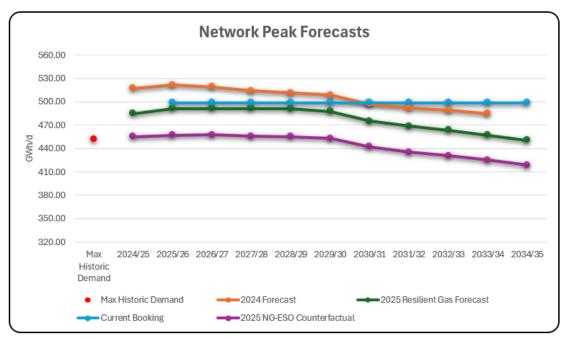


Figure 7: Peak demand forecast compared to NESO's view, last year's forecast and capacity bookings.

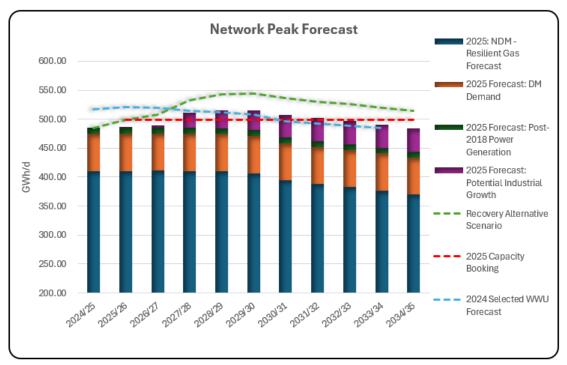


Figure 8: 2025 network demand forecast breakdown (please note that potential industrial growth is excluded from the core forecast values, it is included here for illustrative purposes only)

5. Supply

5.1 Key messages

- Each year we ensure that we have sufficient capacity booked with NGT at our seventeen Offtake sites to meet peak demand in our network for the coming year and over the booking period.
- There are 22 biomethane sites connected to our network which have capacity to meet the heating needs of almost 170,000 customer homes, more than enough to supply a city the size of Cardiff.
- We have a further 9 biomethane sites with booked capacity on our network that would increase
 the customers supplied to the equivalent of nearly 250,000 homes. The count of enquiries for
 biomethane injection has remained steady over the last twelve months, indicating continued
 interest from prospective customers.
- We are supporting significant industry work to update regulatory standards around gas quality so that networks can transport a wider range of gases safely and in doing so support decarbonisation.
- We are proactively encouraging further green gas connections and are progressing innovative, pragmatic solutions to enable increased transportation of renewable gases including hydrogen, such as compression, blending tees and smart pressure control.

5.2 Winter 2024/25 Review

During the winter period from 1 October 2024 to 31 March 2025, we transported 3.33 billion cubic metres of gas to homes and businesses in our network area. Most of this gas is supplied from the NTS into our network via our seventeen offtakes. However, 37 million cubic metres of the gas was met by our 22 biomethane sites which equates to approximately 400 GWh of carbon neutral energy.

We have seen a steady increase in the volume of biomethane transported in our network with a 55% increase since winter 2017/18. This is partly due to biomethane sites becoming more robust, an increase in the number of sites connected to the network and by proactively managing network pressures to allow the entry site to inject.

We had no material supply constraints during the 2024/25 winter, and our supply points were managed as per the offtake agreements we hold with NGT and under the Network Entry Agreements (NEA) we have with each biomethane entry site. This has been true for every year since the WWU launch in 2005.

5.3 Overview

We develop the local transmission and distribution systems to meet the requirements of our customers. In turn, NGT will develop the NTS in line with supply and demand forecasts and this is then detailed within their development statement which is updated in December²⁵.

Most of the gas we transport is brought into the network from the NTS via the offtake sites and we also have biomethane supplies contributing a proportion of gas. As biomethane feeds are subject to customer requirements, we do not assume they will be flowing at peak. Therefore, we book sufficient NTS capacity to meet peak day demand requirements.

The general principles of operation are that supply is delivered to distribution networks at a steady rate for each gas day and that storage within those networks is used to hold the gas until it is required by our customers. We store gas within our network of pipes in the form of 'linepack' and in High Pressure Storage Vessels (or bullets). In total, we have 53 GWh storage available in linepack and 5.2 GWh storage available in bullets. We contract with NGT to utilise 27.5 GWh of flexible intake capacity which supplements physical storage and takes our total daily storage capability to 85.7 GWh.

5.4 Distributed gas

5.4.1 Green gas

We are committed to a future low carbon network and support the increasing focus on DN entry, including for gas from many sources such as biomethane, synthetic gas and hydrogen. Gas from non-fossil sources contributes to achieving the UK Government's climate change targets. We have introduced distributed gas entry standards to support these connections to our network which will be provided in accordance with our licence obligations.

In addition, we support two biomethane working groups under FEN. The Gas Entry Connections Technical Working Group (GECTWG) is a network only group; and the Green Gas Technical Forum (GGTF) includes customer participants from across the industry.

During 2025, following collaborative work to improve capacity studies across GDNs, the changes suggested by stakeholders to improve consistency have been implemented. These studies are provided to customers and contain information on available network capacity for the developer to base a business decision on and to book capacity for entry. A recent addition to the WWU studies has been the introduction of a blending study with supporting data to promote the reduction of propane addition at entry sites. We are also in the process of setting up three new innovation-focused projects:

- 1. Exploring approaches to maximising grid capacity for renewable gases
- 2. Assessing approaches to mapping where the greatest capacity is located.
- 3. Improving calorific value forecasting to assist GDN's provide improved information to biomethane sites to support CV management. We participate in industry programmes and groups supported by IGEM Future Energy Networks which consider changes that will be needed for networks to transport hydrogen either as a blend or 100%. These programmes consider the impacts on several areas including safety, customers, billing and regulatory requirements. Work is carried out collaboratively across the UK Networks so that resources are used efficiently, and learning is shared.

²⁵ https://www.nationalgridgas.com/insight-and-innovation/gas-ten-year-statement-gtys

5.4.2 Biomethane

We currently have 22 biomethane sites connected to our network and nine more that are expected to connect over the next few years. Once the 31 sites are connected, we will have 2.83 TWh of carbon neutral gas source which will enable the heating of nearly 250,000 homes in our network area.

We received 48 enquiries in the last twelve months, indicating ongoing interest in this area. This activity has been primarily driven by the creation of the UK government's Green Gas Support Scheme (GGSS).

Figure 9 illustrates the current landscape for biomethane at WWU, and the difference in volume of biomethane injected along with an indication of location.

Figure 9: Biomethane landscape at Wales & West
Utilities

5.4.3 Other Renewable Gas

We are continuously looking into other potential sources of renewable gas to assist our progress to net zero. This includes innovation projects which are considering the potential for novel synthetic gas production, such as our Rising Pressure Reformer study. We are also investigating of the potential for hydrogen to supplement biomethane production. This has resulted in multiple connection enquiries, with one synthetic natural gas site having booked capacity on the network. In addition to these we have previously received enquiries relating to landfill gas, which could present further opportunities to transport renewable gas to our customers.

The process and equipment involved in connecting these sites are thought to be largely like biomethane plants, but there may be additional considerations to ensure that the composition of the renewable gas produced conforms to regulations.

5.5 Capacity impacts of distributed gas

The principles of gas distribution are challenged by increasing distributed gas entry. Where this occurs at lower pressure tiers and in less populated areas, we need to introduce new technology including compression to move this gas to the areas where our customers need it.

We are now supporting a **reverse compression** project to resolve a capacity constraint for an existing biomethane entry customer. The compressor facility will take gas from a medium-pressure network creating the required capacity. Next, it will discharge into the high-pressure system where the demand is present due to the larger customer base and wider reach of the network. Creation of this capacity will also allow for further site expansion to generate greater volumes of green gas to help decarbonise the wider gas network.

To maximise the capacity that can be made available with current technology and following the introduction of new technology; **smart pressure control** systems are now needed to provide dynamic pressure-setting changes based on flows of gas into and out of key sites. Our smart pressure control solution has been trialled successfully, and we are now extending this automated control more widely

on a large, medium-pressure network. Please see Section 6.6 Investing in Decarbonisation for further information on the projects mentioned in this section.

We recognise that new commercial and regulatory frameworks will be required to make sure that associated costs are dealt with appropriately. We intend to utilise the reopeners offered by Ofgem where appropriate to allow efficient spend in facilitating more green gas into the network. Continuing our close work with industry, other GDNs, Ofgem and DESNZ will enable us to find the right commercial solution to the current challenges faced with green gas entry.

5.6 NTS supplies

To ensure that we can meet our 1:20 licence condition it is essential that we book sufficient capacity from the NTS to meet our peak day demands. While we consider the availability of distributed gas in the locality, this is not currently treated as a firm supply and is not used to off-set our NTS capacity.

The following table shows the physical size of our Offtake sites supplying the various parts of our LTS along with the 2025/26 flat capacity bookings.

Culavatam Nama	Capacity		2005/20 Compain Backing (CMH/d)				
Subsystem Name	kWh/h	GWh/d	2025/26 Capacity Bookings (GWh/d				
South West (SW)							
	1,300,000	31.20	28.29				
Northern	1,256,667	30.16	22.70				
	2,329,167	55.90	57.41				
Central	1,679,167	40.30	25.37				
Ceritiai	1,950,000	46.80	34.53				
Southern	812,500	19.50	14.72				
Southern	2,753,472	66.08	47.67				
Other	1,321,667	31.72	20.50				
Other	487,500	11.70	8.21				
	374,833	9.00	4.94				
Pressure Controlled	292,500	7.02	4.15				
Fressure Controlled	216,667	5.20	2.90				
	401,267	9.63	5.79				
Wales South (WS)							
	4,552,714	109.27	96.16				
South Wales	2,759,250	66.22	36.46				
	3,035,139	72.84	70.42				
Wales North (WN)							
North Wales	2,198,264	52.76	52.03				

Figure 10: Physical and commercial capacity through our NTS Offtake sites

5.6.1 Network Collaboration

We engage with NGT and other system Users through forums such as Transmission Workgroup which develops changes to commercial arrangements. Relevant examples of forums we contribute to are given below:

- 0849R Commercial Framework Review to Enable Hydrogen Blending
- 0894 Facilitating Biomethane entry into the GDN by exporting methane from the GDN into the NTS via Compression
- 0917 Biomethane propane funding.

Through these groups we aim to ensure that arrangements allow efficient access to and use of the Total System for our customers. The progress of all code modifications is recorded on the Joint Office website.²⁶

²⁶ https://www.gasgovernance.co.uk/livemods

6. Investment in the Distribution Network

6.1 Key messages

- Our stakeholders have told us that maintaining a safe, reliable gas supply is a key priority.
- We adopt innovative techniques to ensure efficient investment in network health through
 use of monetised risk models and have fed this analysis into our business planning processes.
 A targeted, efficient and effective investment programme will enable us to achieve this
 developed using predictive analytics and supported by high quality data.
- In future, we anticipate increasing requirements for network capacity, compression, storage, and smart control to accommodate increasing demands for flexible gas usage and green gas injection from our customers.
- Our RIIO-GD3 Business Plan was submitted to Ofgem in December 2024, and ongoing engagement continues, leading to Final Determinations in December 2025.

6.2 Distribution and Transmission Networks

We manage the operation and maintenance of the above 7 Bar Local Transmission System and below 7 Bar distribution networks in three LDZs: South West, Wales South, and Wales North.

We will continue to develop and invest in our networks to operate a safe and efficient network and to meet current and future customer requirements and operating behaviours.

We are certificated to asset management standard ISO55001 and we plan investment in line with the principles of the standard.

6.3 Network Management

To better understand the reliability and condition of our assets and to understand how this will change over time with different investment scenarios, we used Condition Based Risk Management (CBRM) models during RIIO-GD1. These decision-support tools have helped us to successfully plan, justify and target future investment to maintain the current high level of safety and reliability of the gas supply network.

The established methodologies have been developed further in collaboration across the industry through the Network Asset Risk Metrics (NARMs) methodology work. This uses the principles of event tree analysis which helps us assess safety, reliability, and environmental risk for our assets and gives a monetary value of the risk on our network. We have invested in both systems and people; to further enhance our assessment of asset health, consequence and risk, and inform investment strategies to manage this. We have embedded an asset investment optimisation tool (AIM) and employed data scientists to ensure that we get the most out of the investment in new systems. This enables us to understand the impact of investment on risk and optimise investment decisions, targeting our asset interventions to optimally manage risk. Our RIIO-GD2 plans were derived using these new skills and tools and these underpin measurement of our delivery against our plan. These tools have also been used to develop our RIIO-GD3 plans.

For transmission pipelines, we have implemented an 'as low as reasonably practicable' (ALARP) methodology. This enables us to assess the options available to us and identify the most cost-effective way to minimise societal risk, specifically targeting high consequence areas.

This will achieve the greatest risk reduction for the minimum expenditure in preference to wholesale replacement of pipelines which can only progress when supported by a cost benefit assessment.

6.4 Local Transmission System Investment

Construction work has now been completed on a project to replace a 13km section of the LTS pipeline between Derwenlas and Tywyn in Snowdonia National Park during RIIO-GD2. This pipeline replacement was supported by a cost benefit assessment, and the justification for replacement based on safety, reliability and least whole life cost was accepted with funding agreed by Ofgem in the RIIO-GD2 price control review. We have installed 2km of new steel LTS pipeline, a new HP/IP Pressure Regulating Installation and 13km of new High-density Polyethylene 7bar main, securing the safe and reliable supply of gas to the coastal towns of Tywyn and Aberdovey in the long term. Subject to Ofgem's Final Determinations to be published in December 2025, there may be further pipeline replacements in the 2026-2031 period.

6.5 General Reinforcement and Replacement

We will invest in reinforcement of our network to ensure we maintain security of supply as we connect new consumers, which adheres to the 'peak day demand forecast' described in this document. We will also continue to invest in the replacement of our transportation network assets, primarily for the renewal of mains and services within our distribution system. This includes expenditure associated with the three-tier approach initiated by the HSE for metallic mains replacement under the Iron Mains Risk Reduction Programme (IMRRP). This is our 30-year gas Mains Replacement Programme (from 2002) which requires all iron mains within 30 metres of a building to be replaced by 2032. From 2021 to 2026 we will replace around 2,125km of metallic gas mains and attached steel services, at an annual cost of £120 million.

6.6 Investing for Decarbonisation

In future years, further non-demand driven investment may be required as we respond to stakeholder requirements for hydrogen injection, blending services and compression within the DN to facilitate biomethane injection.

Since August 2023, we have been investing time and resource into a reverse compressor project being funded by the customer, targeting a successful completion in 2025. This will be a first of its kind on our WWU network, made possible by the approval of code mod 808 and will pave the way for further compression projects. This project avoids the needs for laying 14km of high pressure main to bring the biomethane produced at the Anaerobic Digestor (AD) to a point of higher demand on the network. Several thousand more homes will be heated with carbon neutral energy when the compressor is being successfully operated; the AD plant will not have to flare, and WWU will decarbonise a wider part of the network. Although the anticipated run time is between and 10-20% of the year during the summer when demands are constrained, compressors are expensive to install and to operate.

Our first choice is to use control and monitoring devices to automate control of our networks which is the least costly option - but will only work if the demand is available all year round. We use this solution to back out our natural gas sites so that the green gas can access all the demand. We are using Use It or Lose It (UIOLI) funding to roll out our smart pressure control solution across a large medium pressure network in the South West LDZ. Completion of the roll out is targeted for 2025 and upon successful commissioning, will allow three more accepted biomethane sites to connect and inject.

We always analyse to see if our first choice is available before supporting more expensive reverse compression which is sometimes necessary to create demand on constrained networks.

Appendix 1: Links to Supporting Data

Gas Transporter Licence

Link	Description
https://www.ofgem.gov.uk/energy-policy-and- regulation/industry-licensing/licences-and- licence-conditions	We are required to publish this annual statement in accordance with Standard Special Condition D3 of our Gas Transporters Licence

Long Term Strategy

Link	Description
https://www.wwutilities.co.uk/media/6447/network-innovation-allowance-annual-summary-2024-25.pdf	Wales and West Utilities 2024/25 Delivering Innovation Report
https://www.wwutilities.co.uk/media/ehrcyu1e/wwu-annual-environmental-report-2024-25.pdf	Wales and West Utilities 2024/25 Annual Environmental Report
https://www.wwutilities.co.uk/media/5323/wwu- hyline-public-report.pdf	HyLine Project Final Report

Demand & Supply Data

For data workbook please visit: www-2025-long-term-development-statement-workbook.xlsx

Sheet Name	Description
01. CWV's & Coldest Weather Day	12 months of recorded actual Composite Weather Variables. Tables showing the demand from the statistical "Coldest Day" and the "Highest Demand Day". Taken from National Gas - "Data Item Explorer". https://data.nationalgas.com/find-gas-data
02. Forecast Peak Demand	2024 10-year forecast of Peak Day Demand in GWh
03. Historic Max Day Demand	Highest historical actual demand days in GWh
04. Forecast Annual Demand	2024 10-year forecast of Annual Demand in GWh (Calendar Year)
05. Historical Annual Demand	Actual Historic Annual Demand in GWh (Calendar Year)
06. LT Summary Report	Long Term Summary Report showing available and secured capacities at WWU Offtakes. Taken from National Gas - "Data Item Explorer". https://data.nationalgas.com/reports/capacity
07. Offtake Capacities	Table of Offtake capacities compared to Forecast and Booked capacity for 2024/25
Link	Description
http://www.gasgovernance.co.uk/OAD	Transportation Principal Document section covering Demand Estimation and Demand Forecasting
https://www.ofgem.gov.uk/publications/exit- capacity-planning-guidance	Ofgem's Exit Capacity Planning Guidance document
https://www.nationalgas.com/sites/default/files/documents/Gas%20Demand%20Forecasting%20Methodology%202020 v1.pdf	NGT's Gas Demand Forecasting Methodology

The Gas Transportation System

Link	Description
https://www.nationalgas.com/our-businesses/network-route	Mapping showing the layout of the NTS

Connections at WWU

Link	Description
https://www.wwutilities.co.uk/services/gas-connections/	General Information for exit and entry connections
https://www.wwutilities.co.uk/media/6260/connections-and-other-distribution-services-charges-march-2025.pdf	Connections and Other Distribution Services Charges
https://www.wwutilities.co.uk/media/6431/4b-principles-and-methods-statement-for-connection-charging-july-2025.pdf	Connection Charging Methodology
https://www.wwutilities.co.uk/media/2254/your-energy-our-network-usingour-gas-network-for-your-biomethane-gas.pdf	Overview of biomethane and other network entry connections
https://www.wwutilities.co.uk/media/1349/wwu-distributed-gas-information-strategy.pdf	Distributed Gas Information Strategy
https://www.wwutilities.co.uk/media/1351/wwu-distributed-gas-connections-guide.pdf	Distributed Gas Connections Guide
https://www.legislation.gov.uk/uksi/1996/551/contents/made	Gas Safety (Management) Regulations